3.2.66 \(\int \frac {(2+3 x^2) (3+5 x^2+x^4)^{3/2}}{x^2} \, dx\) [166]

3.2.66.1 Optimal result
3.2.66.2 Mathematica [C] (warning: unable to verify)
3.2.66.3 Rubi [A] (verified)
3.2.66.4 Maple [A] (verified)
3.2.66.5 Fricas [F]
3.2.66.6 Sympy [F]
3.2.66.7 Maxima [F]
3.2.66.8 Giac [F]
3.2.66.9 Mupad [F(-1)]

3.2.66.1 Optimal result

Integrand size = 25, antiderivative size = 312 \[ \int \frac {\left (2+3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{x^2} \, dx=\frac {412 x \left (5+\sqrt {13}+2 x^2\right )}{35 \sqrt {3+5 x^2+x^4}}+\frac {1}{35} x \left (655+129 x^2\right ) \sqrt {3+5 x^2+x^4}-\frac {\left (14-3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{7 x}-\frac {206 \sqrt {\frac {2}{3} \left (5+\sqrt {13}\right )} \sqrt {\frac {6+\left (5-\sqrt {13}\right ) x^2}{6+\left (5+\sqrt {13}\right ) x^2}} \left (6+\left (5+\sqrt {13}\right ) x^2\right ) E\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{35 \sqrt {3+5 x^2+x^4}}+\frac {19 \sqrt {\frac {3}{2 \left (5+\sqrt {13}\right )}} \sqrt {\frac {6+\left (5-\sqrt {13}\right ) x^2}{6+\left (5+\sqrt {13}\right ) x^2}} \left (6+\left (5+\sqrt {13}\right ) x^2\right ) \operatorname {EllipticF}\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right ),\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {3+5 x^2+x^4}} \]

output
-1/7*(-3*x^2+14)*(x^4+5*x^2+3)^(3/2)/x+412/35*x*(5+2*x^2+13^(1/2))/(x^4+5* 
x^2+3)^(1/2)+1/35*x*(129*x^2+655)*(x^4+5*x^2+3)^(1/2)+19/2*(1/(36+x^2*(30+ 
6*13^(1/2))))^(1/2)*(36+x^2*(30+6*13^(1/2)))^(1/2)*EllipticF(x*(30+6*13^(1 
/2))^(1/2)/(36+x^2*(30+6*13^(1/2)))^(1/2),1/6*(-78+30*13^(1/2))^(1/2))*(6+ 
x^2*(5+13^(1/2)))*6^(1/2)/(5+13^(1/2))^(1/2)*((6+x^2*(5-13^(1/2)))/(6+x^2* 
(5+13^(1/2))))^(1/2)/(x^4+5*x^2+3)^(1/2)-206/105*(1/(36+x^2*(30+6*13^(1/2) 
)))^(1/2)*(36+x^2*(30+6*13^(1/2)))^(1/2)*EllipticE(x*(30+6*13^(1/2))^(1/2) 
/(36+x^2*(30+6*13^(1/2)))^(1/2),1/6*(-78+30*13^(1/2))^(1/2))*(6+x^2*(5+13^ 
(1/2)))*(30+6*13^(1/2))^(1/2)*((6+x^2*(5-13^(1/2)))/(6+x^2*(5+13^(1/2))))^ 
(1/2)/(x^4+5*x^2+3)^(1/2)
 
3.2.66.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 6.51 (sec) , antiderivative size = 235, normalized size of antiderivative = 0.75 \[ \int \frac {\left (2+3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{x^2} \, dx=\frac {-1260+3884 x^4+2130 x^6+418 x^8+30 x^{10}+412 i \sqrt {2} \left (-5+\sqrt {13}\right ) x \sqrt {\frac {-5+\sqrt {13}-2 x^2}{-5+\sqrt {13}}} \sqrt {5+\sqrt {13}+2 x^2} E\left (i \text {arcsinh}\left (\sqrt {\frac {2}{5+\sqrt {13}}} x\right )|\frac {19}{6}+\frac {5 \sqrt {13}}{6}\right )-i \sqrt {2} \left (-65+412 \sqrt {13}\right ) x \sqrt {\frac {-5+\sqrt {13}-2 x^2}{-5+\sqrt {13}}} \sqrt {5+\sqrt {13}+2 x^2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {2}{5+\sqrt {13}}} x\right ),\frac {19}{6}+\frac {5 \sqrt {13}}{6}\right )}{70 x \sqrt {3+5 x^2+x^4}} \]

input
Integrate[((2 + 3*x^2)*(3 + 5*x^2 + x^4)^(3/2))/x^2,x]
 
output
(-1260 + 3884*x^4 + 2130*x^6 + 418*x^8 + 30*x^10 + (412*I)*Sqrt[2]*(-5 + S 
qrt[13])*x*Sqrt[(-5 + Sqrt[13] - 2*x^2)/(-5 + Sqrt[13])]*Sqrt[5 + Sqrt[13] 
 + 2*x^2]*EllipticE[I*ArcSinh[Sqrt[2/(5 + Sqrt[13])]*x], 19/6 + (5*Sqrt[13 
])/6] - I*Sqrt[2]*(-65 + 412*Sqrt[13])*x*Sqrt[(-5 + Sqrt[13] - 2*x^2)/(-5 
+ Sqrt[13])]*Sqrt[5 + Sqrt[13] + 2*x^2]*EllipticF[I*ArcSinh[Sqrt[2/(5 + Sq 
rt[13])]*x], 19/6 + (5*Sqrt[13])/6])/(70*x*Sqrt[3 + 5*x^2 + x^4])
 
3.2.66.3 Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 325, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {1594, 25, 1490, 1503, 1412, 1455}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (3 x^2+2\right ) \left (x^4+5 x^2+3\right )^{3/2}}{x^2} \, dx\)

\(\Big \downarrow \) 1594

\(\displaystyle -\frac {3}{7} \int -\left (\left (43 x^2+88\right ) \sqrt {x^4+5 x^2+3}\right )dx-\frac {\left (14-3 x^2\right ) \left (x^4+5 x^2+3\right )^{3/2}}{7 x}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {3}{7} \int \left (43 x^2+88\right ) \sqrt {x^4+5 x^2+3}dx-\frac {\left (14-3 x^2\right ) \left (x^4+5 x^2+3\right )^{3/2}}{7 x}\)

\(\Big \downarrow \) 1490

\(\displaystyle \frac {3}{7} \left (\frac {1}{15} \int \frac {824 x^2+1995}{\sqrt {x^4+5 x^2+3}}dx+\frac {1}{15} x \sqrt {x^4+5 x^2+3} \left (129 x^2+655\right )\right )-\frac {\left (14-3 x^2\right ) \left (x^4+5 x^2+3\right )^{3/2}}{7 x}\)

\(\Big \downarrow \) 1503

\(\displaystyle \frac {3}{7} \left (\frac {1}{15} \left (1995 \int \frac {1}{\sqrt {x^4+5 x^2+3}}dx+824 \int \frac {x^2}{\sqrt {x^4+5 x^2+3}}dx\right )+\frac {1}{15} x \sqrt {x^4+5 x^2+3} \left (129 x^2+655\right )\right )-\frac {\left (14-3 x^2\right ) \left (x^4+5 x^2+3\right )^{3/2}}{7 x}\)

\(\Big \downarrow \) 1412

\(\displaystyle \frac {3}{7} \left (\frac {1}{15} \left (824 \int \frac {x^2}{\sqrt {x^4+5 x^2+3}}dx+\frac {665 \sqrt {\frac {3}{2 \left (5+\sqrt {13}\right )}} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) \operatorname {EllipticF}\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right ),\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {x^4+5 x^2+3}}\right )+\frac {1}{15} x \sqrt {x^4+5 x^2+3} \left (129 x^2+655\right )\right )-\frac {\left (14-3 x^2\right ) \left (x^4+5 x^2+3\right )^{3/2}}{7 x}\)

\(\Big \downarrow \) 1455

\(\displaystyle \frac {3}{7} \left (\frac {1}{15} \left (\frac {665 \sqrt {\frac {3}{2 \left (5+\sqrt {13}\right )}} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) \operatorname {EllipticF}\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right ),\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{\sqrt {x^4+5 x^2+3}}+824 \left (\frac {x \left (2 x^2+\sqrt {13}+5\right )}{2 \sqrt {x^4+5 x^2+3}}-\frac {\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} \sqrt {\frac {\left (5-\sqrt {13}\right ) x^2+6}{\left (5+\sqrt {13}\right ) x^2+6}} \left (\left (5+\sqrt {13}\right ) x^2+6\right ) E\left (\arctan \left (\sqrt {\frac {1}{6} \left (5+\sqrt {13}\right )} x\right )|\frac {1}{6} \left (-13+5 \sqrt {13}\right )\right )}{2 \sqrt {x^4+5 x^2+3}}\right )\right )+\frac {1}{15} x \sqrt {x^4+5 x^2+3} \left (129 x^2+655\right )\right )-\frac {\left (14-3 x^2\right ) \left (x^4+5 x^2+3\right )^{3/2}}{7 x}\)

input
Int[((2 + 3*x^2)*(3 + 5*x^2 + x^4)^(3/2))/x^2,x]
 
output
-1/7*((14 - 3*x^2)*(3 + 5*x^2 + x^4)^(3/2))/x + (3*((x*(655 + 129*x^2)*Sqr 
t[3 + 5*x^2 + x^4])/15 + (824*((x*(5 + Sqrt[13] + 2*x^2))/(2*Sqrt[3 + 5*x^ 
2 + x^4]) - (Sqrt[(5 + Sqrt[13])/6]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 
+ Sqrt[13])*x^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticE[ArcTan[Sqrt[(5 + Sqrt 
[13])/6]*x], (-13 + 5*Sqrt[13])/6])/(2*Sqrt[3 + 5*x^2 + x^4])) + (665*Sqrt 
[3/(2*(5 + Sqrt[13]))]*Sqrt[(6 + (5 - Sqrt[13])*x^2)/(6 + (5 + Sqrt[13])*x 
^2)]*(6 + (5 + Sqrt[13])*x^2)*EllipticF[ArcTan[Sqrt[(5 + Sqrt[13])/6]*x], 
(-13 + 5*Sqrt[13])/6])/Sqrt[3 + 5*x^2 + x^4])/15))/7
 

3.2.66.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 1412
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b 
^2 - 4*a*c, 2]}, Simp[(2*a + (b + q)*x^2)*(Sqrt[(2*a + (b - q)*x^2)/(2*a + 
(b + q)*x^2)]/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*EllipticF 
[ArcTan[Rt[(b + q)/(2*a), 2]*x], 2*(q/(b + q))], x] /; PosQ[(b + q)/a] && 
!(PosQ[(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[ 
{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1455
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[b^2 - 4*a*c, 2]}, Simp[x*((b + q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4 
])), x] - Simp[Rt[(b + q)/(2*a), 2]*(2*a + (b + q)*x^2)*(Sqrt[(2*a + (b - q 
)*x^2)/(2*a + (b + q)*x^2)]/(2*c*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[ArcTan 
[Rt[(b + q)/(2*a), 2]*x], 2*(q/(b + q))], x] /; PosQ[(b + q)/a] &&  !(PosQ[ 
(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, 
c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1490
Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symb 
ol] :> Simp[x*(2*b*e*p + c*d*(4*p + 3) + c*e*(4*p + 1)*x^2)*((a + b*x^2 + c 
*x^4)^p/(c*(4*p + 1)*(4*p + 3))), x] + Simp[2*(p/(c*(4*p + 1)*(4*p + 3))) 
 Int[Simp[2*a*c*d*(4*p + 3) - a*b*e + (2*a*c*e*(4*p + 1) + b*c*d*(4*p + 3) 
- b^2*e*(2*p + 1))*x^2, x]*(a + b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, 
 b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && 
 GtQ[p, 0] && FractionQ[p] && IntegerQ[2*p]
 

rule 1503
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[d   Int[1/Sqrt[a + b*x^2 + c*x^4] 
, x], x] + Simp[e   Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b + q) 
/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1594
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*( 
x_)^4)^(p_.), x_Symbol] :> Simp[(f*x)^(m + 1)*(a + b*x^2 + c*x^4)^p*((d*(m 
+ 4*p + 3) + e*(m + 1)*x^2)/(f*(m + 1)*(m + 4*p + 3))), x] + Simp[2*(p/(f^2 
*(m + 1)*(m + 4*p + 3)))   Int[(f*x)^(m + 2)*(a + b*x^2 + c*x^4)^(p - 1)*Si 
mp[2*a*e*(m + 1) - b*d*(m + 4*p + 3) + (b*e*(m + 1) - 2*c*d*(m + 4*p + 3))* 
x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && G 
tQ[p, 0] && LtQ[m, -1] && m + 4*p + 3 != 0 && IntegerQ[2*p] && (IntegerQ[p] 
 || IntegerQ[m])
 
3.2.66.4 Maple [A] (verified)

Time = 1.46 (sec) , antiderivative size = 233, normalized size of antiderivative = 0.75

method result size
risch \(\frac {15 x^{10}+209 x^{8}+1065 x^{6}+1942 x^{4}-630}{35 x \sqrt {x^{4}+5 x^{2}+3}}+\frac {342 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )}{\sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}}-\frac {29664 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )-E\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )\right )}{35 \sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}\, \left (5+\sqrt {13}\right )}\) \(233\)
default \(\frac {3 x^{5} \sqrt {x^{4}+5 x^{2}+3}}{7}+\frac {134 x^{3} \sqrt {x^{4}+5 x^{2}+3}}{35}+10 x \sqrt {x^{4}+5 x^{2}+3}+\frac {342 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )}{\sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}}-\frac {29664 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )-E\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )\right )}{35 \sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}\, \left (5+\sqrt {13}\right )}-\frac {6 \sqrt {x^{4}+5 x^{2}+3}}{x}\) \(260\)
elliptic \(\frac {3 x^{5} \sqrt {x^{4}+5 x^{2}+3}}{7}+\frac {134 x^{3} \sqrt {x^{4}+5 x^{2}+3}}{35}+10 x \sqrt {x^{4}+5 x^{2}+3}+\frac {342 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )}{\sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}}-\frac {29664 \sqrt {1-\left (-\frac {5}{6}+\frac {\sqrt {13}}{6}\right ) x^{2}}\, \sqrt {1-\left (-\frac {5}{6}-\frac {\sqrt {13}}{6}\right ) x^{2}}\, \left (F\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )-E\left (\frac {x \sqrt {-30+6 \sqrt {13}}}{6}, \frac {5 \sqrt {3}}{6}+\frac {\sqrt {39}}{6}\right )\right )}{35 \sqrt {-30+6 \sqrt {13}}\, \sqrt {x^{4}+5 x^{2}+3}\, \left (5+\sqrt {13}\right )}-\frac {6 \sqrt {x^{4}+5 x^{2}+3}}{x}\) \(260\)

input
int((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^2,x,method=_RETURNVERBOSE)
 
output
1/35*(15*x^10+209*x^8+1065*x^6+1942*x^4-630)/x/(x^4+5*x^2+3)^(1/2)+342/(-3 
0+6*13^(1/2))^(1/2)*(1-(-5/6+1/6*13^(1/2))*x^2)^(1/2)*(1-(-5/6-1/6*13^(1/2 
))*x^2)^(1/2)/(x^4+5*x^2+3)^(1/2)*EllipticF(1/6*x*(-30+6*13^(1/2))^(1/2),5 
/6*3^(1/2)+1/6*39^(1/2))-29664/35/(-30+6*13^(1/2))^(1/2)*(1-(-5/6+1/6*13^( 
1/2))*x^2)^(1/2)*(1-(-5/6-1/6*13^(1/2))*x^2)^(1/2)/(x^4+5*x^2+3)^(1/2)/(5+ 
13^(1/2))*(EllipticF(1/6*x*(-30+6*13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2) 
)-EllipticE(1/6*x*(-30+6*13^(1/2))^(1/2),5/6*3^(1/2)+1/6*39^(1/2)))
 
3.2.66.5 Fricas [F]

\[ \int \frac {\left (2+3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{x^2} \, dx=\int { \frac {{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac {3}{2}} {\left (3 \, x^{2} + 2\right )}}{x^{2}} \,d x } \]

input
integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^2,x, algorithm="fricas")
 
output
integral((3*x^6 + 17*x^4 + 19*x^2 + 6)*sqrt(x^4 + 5*x^2 + 3)/x^2, x)
 
3.2.66.6 Sympy [F]

\[ \int \frac {\left (2+3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{x^2} \, dx=\int \frac {\left (3 x^{2} + 2\right ) \left (x^{4} + 5 x^{2} + 3\right )^{\frac {3}{2}}}{x^{2}}\, dx \]

input
integrate((3*x**2+2)*(x**4+5*x**2+3)**(3/2)/x**2,x)
 
output
Integral((3*x**2 + 2)*(x**4 + 5*x**2 + 3)**(3/2)/x**2, x)
 
3.2.66.7 Maxima [F]

\[ \int \frac {\left (2+3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{x^2} \, dx=\int { \frac {{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac {3}{2}} {\left (3 \, x^{2} + 2\right )}}{x^{2}} \,d x } \]

input
integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^2,x, algorithm="maxima")
 
output
integrate((x^4 + 5*x^2 + 3)^(3/2)*(3*x^2 + 2)/x^2, x)
 
3.2.66.8 Giac [F]

\[ \int \frac {\left (2+3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{x^2} \, dx=\int { \frac {{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac {3}{2}} {\left (3 \, x^{2} + 2\right )}}{x^{2}} \,d x } \]

input
integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^2,x, algorithm="giac")
 
output
integrate((x^4 + 5*x^2 + 3)^(3/2)*(3*x^2 + 2)/x^2, x)
 
3.2.66.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (2+3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{x^2} \, dx=\int \frac {\left (3\,x^2+2\right )\,{\left (x^4+5\,x^2+3\right )}^{3/2}}{x^2} \,d x \]

input
int(((3*x^2 + 2)*(5*x^2 + x^4 + 3)^(3/2))/x^2,x)
 
output
int(((3*x^2 + 2)*(5*x^2 + x^4 + 3)^(3/2))/x^2, x)